AP Ksp practice

1994 A $MgF_2(s) \leftrightarrow Mg^{2+}(aq) + 2 F(aq)$

In a saturated solution of MgF₂ at 18 $^{\circ}$ C, the concentration of Mg²⁺ is 1.21x10⁻³ molar. The equilibrium is represented by the equation above.

- (a) Write the expression for the solubility-product constant, K_{sp} , and calculate its value at 18° C.
- (b) Calculate the equilibrium concentration of Mg²⁺ in 1.000 liter of saturated MgF₂ solution at 18°C to which 0.100 mole of solid KF has been added. The KF dissolves completely. Assume the volume change is negligible.
- Predict whether a precipitate of MgF₂ will form when 100.0 milliliters of a 3.00²10⁻³-molar Mg(NO₃)₂ solution is mixed with 200.0 milliliters of a 2.00²l0⁻³-molar NaF solution at 18^oC. Calculations to support your prediction must be shown.
- (d) At 27°C the concentration of Mg^{2+} in a saturated solution of MgF_2 is $1.17@10^{-3}$ molar. Is the dissolving of MgF_2 in water an endothermic or an exothermic process? Give an explanation to support your conclusion.

1987 A $NH_3 + H_2O \le NH_4^+ + OH^-$

Ammonia is a weak base that dissociates in water as shown above. At 25° C, the base dissociation constant, K_b, for NH₃ is 1.8×10^{-5} .

- (a) Determine the hydroxide ion concentration and the percentage dissociation of a 0.150 molar solution of ammonia at 25°C.
- (b) Determine the pH of a solution prepared by adding 0.0500 mole of solid ammonium chloride to 100. mL of a 0.150 molar solution of ammonia.
- (c) If 0.0800 mole of solid magnesium chloride, MgCl₂, is dissolved in the solution prepared in part (b) and the resulting solution is well-stirred, will a precipitate of Mg(OH)₂ form? Show calculations to support your answer. (Assume the volume of the solution is unchanged. The solubility product constant for Mg(OH)₂ is 1.5x10⁻¹¹).

1985 A

At 25°C the solubility product constant, K_{sp} , for strontium sulfate, SrSO₄, is 7.6×10⁻⁷. The solubility product constant for strontium fluoride, SrF₂, is 7.9×10⁻¹⁰.

- (a) What is the molar solubility of $SrSO_4$ in pure water at $25^{\circ}C$?
- (b) What is the molar solubility of SrF_2 in pure water at $25^{\circ}C$?
- (c) An aqueous solution of Sr(NO₃)₂ is added slowly to 1.0 litre of a well-stirred solution containing 0.020 mole F⁻ and 0.10 mole SO₄²⁻ at 25^oC. (You may assume that the added Sr(NO₃)₂ solution does not materially affect the total volume of the system.)
 - 1. Which salt precipitates first?

2. What is the concentration of strontium ion, Sr^{2+} , in the solution when the first precipitate begins to form?

(d) As more Sr(NO₃)₂ is added to the mixture in (c) a second precipitate begins to form. At that stage, what percent of the anion of the first precipitate remains in solution?

Bonus question (from an actual freshman chem test)...

When blood is donated, a sodium oxalate solution is used to precipitate the Ca²⁺, which triggers clotting. A 104mL sample of blood contains 9.7×10^{-5} g/mL of Ca²⁺. A technologist treats he sample with 110.0mL of 0.1350M Na₂C₂O₄. Calculate the [Ca²⁺] after the treatment. K_{sp} CaC₂O₄ = 2.3×10^{-9}

Qualitative analysis scheme for identification of metal ions in solution

